PREDICTION AND REDUCTION OF BACKBREAK IN BLASTING OPERATIONS USING RANDOM FOREST METHOD AT PAMUBULAN LIMESTONE QUARRY
Abstract
Backbreak pada operasi peledakan merupakan hasil yang tidak diinginkan yang menyebabkan terbentuknya retakan di belakang barisan terakhir peledakan. Hal ini menyebabkan tidak terciptanya smooth freeface, mengurangi efisiensi pengeboran, dan fragmentasi boulder pada peledakan berikutnya. Untuk mengatasi masalah ini, dilakukan upaya untuk memprediksi dan mengurangi backbreak dengan mempertimbangkan berbagai parameter peledakan seperti sifat batuan, burden, spasi, kedalaman lubang, stemming, powder column, powder factor, total lubang, total baris, desain peledakan, interhole timing, interrow timing, back row control, dan time windows. Karena kompleksitas interaksi di antara parameter-parameter tersebut, dalam makalah ini digunakan metode Random Forest yang terdiri dari banyak pohon keputusan. Ditemukan bahwa koefisien determinasi antara backbreak aktual dan prediksi adalah 83,89%, sedangkan kesalahan relatifnya adalah 13,12%
+/- 1,30%. Dengan menerapkan hasil dari penelitian ini, backbreak dapat dikurangi dari 149,38 menjadi 50,04 cm.
Keywords
Full Text:
PDFReferences
Agrawal, H., & Mishra, A. K. (2018). Probabilistic analysis on scattering effect of initiation systems and concept of modified charge per delay for prediction of blast induced ground vibrations. Measurement, 130, 306-317.
Alejano, L. R., Pons, B., Bastante, F. G., Alonso, E., & Stockhausen, H. W. (2007). Slope geometry
design as a means for controlling rockfalls in quarries. International Journal of Rock Mechanics and Mining Sciences, 44(6), 903-921.
Ash, R. L. (1963). The mechanics of rock breakage, standards for blasting design Pit and Quarry.
Badal, R. (1994). Controlled blasting in jointed rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics , 31(1), 79-84.
Cunningham, C. (2005). The Kuz-Ram fragmentation model – 20 years on. Brighton Conference Proceedings 2005. Brighton: European Federation of Explosives Engineers.
Ebrahim, E., Monjezi, M., Khalesi, M., & Armaghani, D. (2015). Prediction and optimization of back- break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bull Eng Geol Environ.
Faraway, J. J. (2009). Linear Models with R. Chapman & Hall/CRC.
Freedman, D. A. (2009). Statistical Models Theory and Practice. Berkeley: University of California. Gate WC, Ortiz BLT, & Florez BLT. (2005). Analysis of rockfall and blasting backbreak problems.
Proceedings of the American rock mechanics conference, 671–680.
Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models.
: Columbia University.
Ghasemi, E., Amnieh, H., & Bagherpour, R. (2016). Assessment of backbreak due to blasting operation in open pit mines: a case study. Environ Earth Sci 75, 552.
Jimeno, C., Jimeno, E., & Carcedo, F. (1995). Drilling and blasting of rocks. Amsterdam: Balkema. Kara, S., Adamson, W. R., Reisz, W. J., & Trousselle, R. (2014). The Latest Generation of the
Electronic System Enhanced Safety and Productivity. Procedia Engineering, 83, 432-440.
Konya, C. J. (2003). Rock Blasting and Overbreak Control. USA: National Highway Institute.
Kumar, S., Mishra, A. K., & Choudhary, B. S. (2022). Prediction of back break in blasting using random decision trees. Engineering with Computers , 38.
Kumar, S., Mishra, A., & Choudhary, B. (2020). Prediction of back break in blasting using random decision trees. Engineering with Computers .
Li, H., Feng, D., & Ma, H. (2015). Random forest prediction model and its application to predicting house hazard from cutting excavation blasting. 34.
Longjun, D., Xibing, L., & Qiyue, L. (2011). Comparisons of Random Forest and Support Vector Machine for Predicting Blasting Vibration Characteristic Parameters. Procedia Engineering, 26, Pages 1772-1781.
M. K., & Monjezi, M. ( 2013). Prediction of Backbreak in Open-Pit Blasting Operations using the Machine Learning Method. Rock Mech Rock Eng 46, 389–396.
Monjezi, M., & Dehghani, H. (2008). Evaluation of effect of blasting pattern parameters on back break using neural networks. International Journal of Rock Mechanics & Mining Sciences 45 , 1446– 1453.
Monjezi, M., Saghatforroush, A., Faradonbeh, R. S., & Armaghani, D. J. (2016). Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting. Engineering with Computers, 32(2), 255–266.
Naz, A. T., & Roy, R. (2022). Investigation of future applications of self-engineering using drones.
Materials Today: Proceedings.
Wang, Y., Wang, S., Zhao, Y., Guo, P., Liu, Y., & Cao, P. (2019). Blast Induced Crack Propagation and Damage Accumulation in Rock Mass Containing Initial Damage. Shock and Vibration in Deep Mining Science.
Wood, T. (2022). Machine Learning Glossary and Terms: Random Forest. From DeepAI: deepai.org/machine-learning-glossary-and-terms/random-forest
Yang, H. S., & Rai, P. (2011). Characterization of fragment size vis-à-vis delay timing in quarry blasts.
Powder Technology, 211(1), 120-126.
Zhu, W., Wei, J., Niu, L., Li, S., & Li, S. (2018). Numerical Simulation on Damage and Failure Mechanism of Rock under Combined Multiple Strain Rates. Shock and Vibration.
Article Metrics
Abstract view : 92 timesPDF - 26 times
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.